The CONTHOS 3 state-of-the-art thermal conductivity gas-analyzer is an analytical instrument developed for online industrial use.

Some of the further outstanding technical features of LFE's 3rd generation, microprocessor based gas-analyzer are:

- response highly independent of the gas flow
- unusually high long-term response stability
- intuitive user-interface based on NAMUR-recommendations
- automatic self-diagnosis
- optional dynamic interference correction of up to 3 gases in conjunction with external, selective gas analyzers

The technical features of the unique CONTHOS 3 gas analyzer open up new areas of application for the thermal-conductivity principle, as well as help to eliminate weak points in present analysis problems.

Choosing the TCD-operating-temperature above that of the dew-point of the sample-gas can, in conjunction with external and internal heated gas lines (field housing only), alleviate the need for a sample-gas cooler.

First developed in 1979 the LFE - CONTHOS gas analyzer has proven itself in many years of continuous operation in such fields as:

- in the iron and steel industry
- in corrosive process gases in the chemical industry
- in all of the "classical" applications of the TCD-principle

Key Features

- Analysis of H₂, He, Ar or other gases in binary- and quasi-binary gas mixtures
- Ultra-fast response $T_{90} \leq 3$ sec
- Highly corrosion- and temperature resistant TCD detector

Typical Applications

- Steel- and petrochemical industries
- UEL/LEL monitoring
- Inert gas monitoring
- H₂ and O₂ purity in electrolysis of water

Description
Options

- Up to 3 switched ranges: independently configurable, suppressed & non-suppressed
- Dynamic interference correction in conjunction with external, selective gas analyzers for multiple gas constituents
- Digital I/O-board for external range switching, threshold contacts, etc.
- RS-485 interface with Modbus RTU protocol
- Heated gas lines within analyzer housing (max. 140°C; CONTHOS 3F only)
- TC-detector with flowed reference cell (CONTHOS 3E & 3F)

LFE’s Thermal Conductivity Detector (TCD)

In conventional gas analyzers utilizing the principle of thermal conductivity a heated object is suspended in a volume containing the sample gas. Electrical energy passed through the object results in the object heating up and attaining an equilibrium temperature which is primarily dependent upon the thermal conduction properties of the surrounding gas. This temperature is normally measured directly as a change in the electrical resistance of the heated object itself.

LFE’s unique principle modifies this “classical” method by spatially and electrically decoupling the heated element from the temperature sensing element. The specially designed geometry of the TCD-cell in conjunction with the decoupling effectively suppresses undesired competing thermal effects (i.e. free and forced convectional effects). The result is an instrument whose quick, stable response requires no compromise between gas flow and response time.

Model Variations

CONTHOS 3E
19"-rack housing
(protective class IP40)

CONTHOS 3F
field-housing
(protective class IP65)

CONTHOS 3F-Exp
explosion protected
ATEX version for zones 1 & 2
Technical Data

General technical data

<table>
<thead>
<tr>
<th>CONTHOS 3E-TCD</th>
<th>CONTHOS 3F-TCD</th>
<th>CONTHOS 3F EXP-TCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>19"-rack housing</td>
<td>Field-housing</td>
<td>Ex p-ATEX system</td>
</tr>
</tbody>
</table>

Housing
- 3HE/ 84TE housing for mounting in 19" cabinet
- Purgeable steel housing for wall mounting; with separate compartments for the electronic components and the analytical components

Protection class
- IP40
- IP65
- Ex Zones 1 and 2 (II 2 G, Ex p II T4)

Dimensions
- (H x W x D)
 - 3HE/ 84TE: 133 x 483 x 427mm
 - 434 x 460 x 270mm
 - 490 x 460 x 270mm

Power
- 100-240VAC (48-62Hz)
- 100VA max. (during warm-up period)

Sample gas connectors
- Swagelok® (SS 316) Standard: for tubing 6mm
- Option: for tubing ¼"

Option : NPT-¼" female

Option: PFA connectors

Data display, inputs and outputs

User interface
- LC-display (40 characters x 16 lines) + bar graph
- Intuitive user interface based on NAMUR recommendation
- Plain text description of instrument status on the LC-display as well as digital status output
- Language: switchable between English & German

Analog signal output
- 2 independently configurable, isolated analog outputs: $R_{\text{load}} = 600\Omega$ max.
- Output levels configurable: 0-20 mA, 4-20mA, 4-20mA (with superimposed instrument status; NAMUR NE43 compliant) as well as test signal levels (0mA, 4mA, 10mA, 12mA & 20mA)

Digital outputs (instrument status)
- Collective instrument status via floating contacts (28V max.; 350mA max.; NAMUR NE107 compliant)

Analogue inputs (optional)
- 3 isolated, configurable analog inputs for interference correction
 - 0 – 20mA or 4 – 20mA ($R_i = 50\Omega$)

Digital I/O (optional)
- Digital inputs: 8 configurable inputs (6 – 24VDC; 10mA max.)
 - remote range switching
 - external triggering of offset- and gain calibration
 - switching of interference correction analog inputs to a secondary input range
 - mapping of user defined input to a digital output

- Digital outputs: 7 configurable outputs (floating relay contacts 28V max.; 350mA max.)
 - threshold monitoring (1 threshold per range)
 - feedback as to the current range
 - calibration gas selection
 - mapping of user defined input to a digital output

RS-485 (optional)
- with Modbus communications protocol; isolated interface
- (cannot be used in conjunction with digital I/O board)

Service interface (RS-232)
- Non-isolated serial interface for accessing the instrument’s configuration via LFE’s proprietary PC software
Technical Data (continued)

Materials in contact with sample gas

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC-Detector</td>
<td>Al_2O_3-ceramic and sapphire, glass and SiO_2-coated Platinum sensor filaments. Corrosion- and temperature-resistant</td>
</tr>
</tbody>
</table>
| Sample-gas connectors | standard: stainless steel (SS 316)
optional: PFA-connectors |
| Sample gas lines | standard: PTFE
optional: stainless steel tubing (SS 321) |

Analytical-/Operational Data

<table>
<thead>
<tr>
<th>Category</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring principle</td>
<td>Difference in thermal conductivity ($\Delta \lambda$) of various gases</td>
</tr>
<tr>
<td>Measured quantity</td>
<td>Concentration of a particular gas component in binary and quasi-binary mixtures.</td>
</tr>
<tr>
<td></td>
<td>In many applications involving multi-component gases the inherent non-selectivity of the thermal conductivity principle can be minimized using interference correction techniques.</td>
</tr>
<tr>
<td></td>
<td>Physical interference reduction is sometimes possible with certain applications due to the wide temperature range of the CONTHOS’ TC-detector.</td>
</tr>
</tbody>
</table>
| Measuring ranges | Up to 3 independently configurable, switchable ranges.
The reference response of each range is factory linearized (4^th-degree polynomial).
Suppressed output ranges within the corresponding reference range can be easily configured.
Range switching is accomplished manually, automatically and/or externally (via optional digital inputs). |
| Response time τ_{90} | ≤ 3 sec (at 60 l/h gas flow and minimum signal dampening level) |
| Precision | $\leq 0.5\%$ FSO (full scale output) (typically better than $\pm 0.2\%$ FSO) |
| Accuracy | better than $\pm 0.5\%$ FSO (typically better than $\pm 0.3\%$ FSO) |
| Calibration | Manual: 2-point (offset/span) calibration
Option: automatic or semi-automatic calibration in conjunction with the optional digital I/O-board or RS-485 |
| Interference correction | 3 correction channels for static and/or dynamic interference correction
(dynamic correction only in conjunction with the optional analog inputs or RS-485)
Prerequisite for dynamic interference correction is the availability of a selective signal, proportional to the particular gas component to be corrected for. |

The stability data is valid for analyzer operation with pure bottled gases. Instrument accuracy is based on binary or quasi-binary gas mixtures. Deviations from the above data can occur in conjunction with process gases depending upon the gas quality and the degree of gas handling. Unless otherwise specified the CONTHOS gas analyzer is neither ex-proof nor intrinsically safe in terms of explosion protection. The CONTHOS may not be employed for the analysis of ignitable gas-mixtures. The customer must ensure compliance with applicable regulations when using the analyzer with inflammable or toxic gases or when installing within explosion endangered environments. The customer must ensure that the sample gas is dry and free of particulates.